УДК 636.5:619:616.98:578:615.371

ИФА как инструмент расчета сроков вхождения с вакцинацией против инфекционной бурсальной болезни сельскохозяйственной птицы

Григорий Юрьевич Бабин, Ольга Андреевна Голубчикова, Светлана Глебовна Дорофеева

Группа компаний ВИК

Аннотация: Инфекционная бурсальная болезнь птиц (ИББ, болезнь Гамборо) представляет собой высококонтагиозную вирусную инфекцию. Экономическая значимость этой болезни определяется значительным ущербом вследствие падежа и вынужденного убоя птицы, а также повышенного поражения организма вторичной патогенной микрофлорой и затрат на проведение ветеринарно-санитарных мероприятий. Во-вторых, что наиболее важно, ИББ вызывает сильнейшую продолжительную иммуносупрессию. ИББ среди птицепоголовья возникает внезапно, уровень заболеваемости достигает до 100%, а смертность – в среднем 20-30%. Ветеринарным врачам необходимо подтвердить клинические признаки болезни лабораторными исследованиями, и для этого используется метод иммуноферментного анализа (ИФА), который является наиболее чувствительным методом, превосходящим остальные. Универсальность метода позволяет в сравнительно короткие сроки проводить массовые серологические исследования. На сегодняшний день лидером в области ИФА-диагностики болезней птиц является компания «BioChek»: ее тест-системы ИФА позволяют не только достоверно проводить мониторинг инфекций, но и оценивать уровень материнских антител с целью точного расчета дня входа с вакцинацией. В статье представлена информация по мониторингу и контролю ИББ на птицефабрике Центрального региона РФ с использованием тест-системы «BioChek» на основе ИФА. При анализе материала, полученного в ходе серологических исследований, учитывали количество и продолжительность выявления материнских антител, которые зависят как от возраста птицы, в котором проводили вакцинацию родительских стад, так и от кратности, способа вакцинации и вида вакцины. В основу расчета даты вакцинации по ИББ положена формула Девентера. Исходный титр материнских антител, период полураспада, целевой титр используемой вакцины и возраст птицы – необходимые данные для введения в формулу Девентера и получения прогнозируемой даты проведения вакцинации.

Ключевые слова: тест-система «BioChek», иммуноферментный анализ (ИФА), инфекционная бурсальная болезнь (ИББ), вирус, патогенность, диагностика, период полураспада, вакцина, профилактика, титры антител, формула Девентера.

Для цитирования: Бабин, Г.Ю. ИФА как инструмент расчета сроков вхождения с вакцинацией против инфекционной бурсальной болезни сельскохозяйственной птицы / Г.Ю. Бабин, О.А. Голубчикова, С.Г. Дорофеева // Птицеводство. – 2022. – №12. – С. 59-68.

doi: 10.33845/0033-3239-2022-71-12-59-68

Введение. Инфекционная бурсальная болезнь птиц (ИББ; тж. болезнь Гамборо, инфекционный бурсит кур), представляет собой высококонтагиозную вирусную инфекцию преимущественно цыплят. Основными клетками-мишенями являются лимфоидные, особенно В-клетки, а из тканей наиболее тяжелому поражению подвергается лимфоидная ткань клоакальной сумки [1].

Вирус ИББ принадлежит к семейству РНК-содержащих вирусов Birnaviridae. Как известно, существует два его серотипа, но только серотип 1 является патогенным. Вирус обладает высокой устойчивостью к большинству дезинфицирующих средств и условиям окружающей среды [2].

В 1962 г. эту специфическую болезнь описал Cosgrove A.S. (США) и назвал ее «нефроз птиц»,

вследствие значительного поражения почек у инфицированной птицы. В дальнейшем было доказано, что данное заболевание поражает, в первую очередь, фабрициеву сумку, а нефроз является осложненным признаком; поэтому болезнь переименовали в инфекционный бурсит. Название «болезнь Гамборо» ассоцируется с местностью, где это заболевание регистрировалось впервые.

Таблица 1. Преодолеваемый уровень материнских антител у различных вакцин. Рекомендации от BioChek 125 Nobilis D-78, Cevac Gumboro L 250 Gallivac IBD, Poulvac Bursine-2, Avipro precise 500 Nobilis Gumboro 228E, Cevac IBD L, Hipra Gamboro GM97, IB-VAC ST(Fatro), VIR-114, Bursine plus (Бурсин Плюс) 700-800 Poulvac, Бурсовак Бурса Ф, AVIPRO IBD EXTREME, Винтерфилд (АВИВАК) 800-1000

Vladimir Inst. BG, Abic Табик МБ

Таблица 2. Периоды полураспада материнских антител, наиболее оптимальный возраст взятия крови для исследования [3,5]													
Возраст при отборе образцов, дни	Период полу- распада, дни	Возраст при отборе образцов, дни	Период полу- распада, дни	Возраст при отборе образцов, дни	Период полураспада, дни								
Род. стадо б	ройлеров	Бройл	еры	Промышленная несушка									
01	4,5	01	3,8	01	6								
02	4,3	02	3,5	02	5,5								
03	4	03	3	03	5,5								
04	4	04	3	04	5								
05	4	05	3	05	5								

Экономическая значимость ИББ проявляется в двух направлениях. Во-первых, она касается клинического течения болезни и смертности цыплят 3-недельного возраста и старше. Во-вторых, что наиболее важно, болезнь у инфицированной в раннем возрасте птицы проявляется продолжительной иммуносупрессией [1].

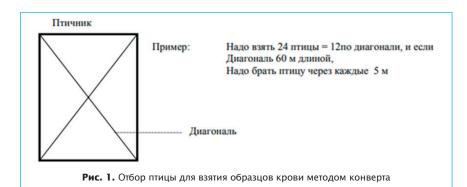
Болезнь причиняет огромный экономический ущерб, складывающийся из большого падежа молодняка птицы (до 40%) и вынужденного убоя, а также из-за проявления вторичных респираторных и других бактериальных инфекций на фоне ИББ [3].

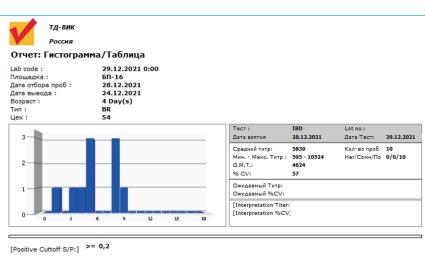
В настоящее время известно, что куры являются единственными представителями животного мира, у которых при воздействии вируса ИББ развивается клиническая форма болезни с характерными патологоанатомическими изменениями органов. Необходимо отметить, что в отношении кур полевые вирусы проявляют различную степень патогенности. Вакцины для кур против ИББ имеют различную инвазивность.

Болезнь возникает внезапно и быстро распространяется среди птицепоголовья. Уровень заболеваемости достигает обычно до 100%. Смертность может быть как нулевой, так и выше 20-30%. Падеж начинается обычно на 3 день после инфицирования, достигает пика и потом начинает снижаться через 7-8 дней [1]. Проявляется ИББ в двух формах: клиническая и субклиническая.

Первые симптомы клинической формы: диарея, сопровождающаяся выделением водянистого беловато-желтого помета; внезапная потеря аппетита; тремор ног, головы и внезапная гибель. Заболеваемость и смертность нарастают быстро и достигают максимума на 3-4 день болезни. При снижении вирулентности вируса смертность в стаде снижается.

Патологоанатомические признаки при клинической форме болезни: в начальной стадии заболевания отмечается воспаление фабрициевой сумки: ее увеличение, отек, гиперемия и кровоизлияния. При гистологическом исследовании наблюдают гибель лимфоидных элементов, некробиоз лимфоцитов. Обнаруживаются кровоизлияния в различных группах мышц (обычно грудных и бедренных), на слизистой железистого желудка


и в слепокишечных миндалинах. Почки увеличены, от светло-серого до темно-коричневого цвета, с четким рисунком заполнения уратами канальцев и мочеточников [4]. При острой клинической форме заболевания бурса заполняется запекшимся фибрином. У переболевшей птицы бурса постепенно атрофируется.


Субклиническая форма наблюдается у цыплят в возрасте менее 4 недель, когда иммунная система наиболее чувствительна к повреждениям. Материнские антитела помогают предотвратить развитие клинической формы, но не вирусной репликации в бурсе. Характерна атрофия бурсы, иммуносупрессия вследствие снижения количества В-лимфоцитов. Повышается восприимчивость к вторичным бактериальным и вирусным инфекциям. Наблюдается увеличение среднесуточной смертности и конверсии корма.

Для подтверждения диагноза на ИББ необходимо провести дифференциальную диагностику; в первую очередь, необходимо исключить инфекционный бронхит, отравление сульфаниламидами, микотоксикозы, а также болезнь Ньюкасла, нефроз-нефрит, лимфоидный лейкоз, болезнь Марека, жировые токсикозы.

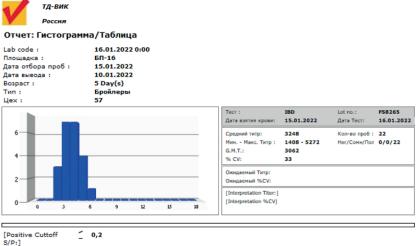
В связи с серьезной потерей прибыли птицепредприятиями при вспышке ИББ особое значение имеет лабораторная диагностика. В настоящее время ветеринарные специалисты в большинстве случаев для подтверждения диагноза заболеваний и мониторинга циркуляции вирусов отправляют в лабораторию образцы крови для исследований методом иммуноферментного анализа (ИФА). Метод ИФА является наиболее чувствительным методом диагностики, значительно превосходящим другие иммунологические реакции. ИФА не требует сложного дорогостоящего оборудования и позволяет в сравнительно короткие сроки проводить массовый серологический мониторинг распространения возбудителей болезней среди птицепоголовья и контроля напряженности иммунитета в стаде. Принцип ИФА основан на визуализации иммунных комплексов за счет использования конъюгированных с ферментом антител. Фермент, как правило, пероксидаза хрена, взаимодействуя с хромогенным субстратом, может быть обнаружен даже в очень низких концентрациях. Хромогенный эффект с высокой степенью точности фиксируют средствами спектрофотометрии.

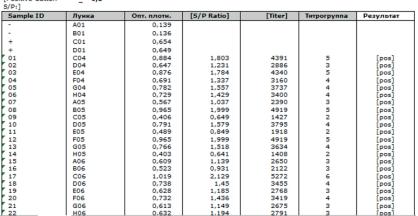
Все существующие отечественные и импортные коммерческие тест-системы ИФА представляют собой твердофазный вариант, в котором специфический иммунносорбент иммобилизован на поверхности пластика. Принцип метода заключается в образовании комплекса антитело-антиген при внесении вирусного антигена в лунки полистироловой планшеты с иммобилизированными антителами. После внесения исследуемой сыворотки, в которой присутствуют специфические антитела,

[Positive Cutton s	5/F-J					
Sample ID	Лунка	Опт. плотн.	[S/P Ratio]	[Titer]	Титрогруппа	Результат
-	A09	0,157				
-	B09	0,159				
+	C09	0,738				
+	D09	0,753				
01	E09	2,092	3,292	8515	8	[pos]
02	F09	1,330	1,995	4908	5	[pos]
03	G09	2,356	3,741	9801	8	[pos]
04	H09	2,503	3,991	10524	9	[pos]
05	A10	0,330	0,293	595	1	[pos]
06	B10	2,161	3,409	8849	8	[pos]
07	C10	1,216	1,801	4386	5	[pos]
08	D10	1,213	1,796	4373	5	[pos]
09	E10	1,030	1,484	3545	4	[pos]
10	F10	0,883	1,234	2894	3	[pos]

Рис. 2. Результаты ИФА «BioChek», Птицефабрика Центрального региона, площадка БП-16, Цех 54

блокируются свободные антигенные детерминанты образовавшегося иммунного комплекса, и антивирусный коньюгат не вступает в реакцию с антигеном [3].


Лидером и новатором в области ветеринарной лабораторной диагностики методом ИФА является компания BioChek, основанная в 1997 г. в Нидерландах. Тестсистемы ИФА BioChek позволяют не только достоверно мониторить эпизоотический фон в бройлерных и родительских стадах, но и оценивать уровень материнских антител.


В статье представлены практические рекомендации по систем-

ному мониторингу и контролю циркуляции вируса ИББ на птицефабрике Центрального региона по трем цехам площадки БП-16 с использованием тест-системы компании BioChek. Согласно полученным гистограммам, проведена аналитика защитных титров материнских антител с определением точек входа проведения вакцинации.

Материал и методика исследований. Для специфической профилактики ИББ применяют вакцины, которые по антигенной активности можно разделить на 5 видов:

Рис. 3. Результаты ИФА «BioChek», Птицефабрика Центрального региона, площадка БП-16, Цех 57

- 1. Мягкие из аттенуированного вируса, не вызывающие существенных изменений в бурсе. Эффективны у цыплят, не имеющих материнских антител. Применяются такие вакцины и при снижении патогенности полевого вируса, когда болезнь протекает бессимптомно. Используют редко.
- 2. Вакцины промежуточного типа из вируса умеренной вирулентности. Эффективны в условиях острой вспышки инфекции и в стационарно неблагополучных хозяйствах, т.к. такие вакцины способны формировать иммунитет у цыплят с материнскими антителами и создавать нужную защиту в более ранние сроки.
- 3. Вакцины вирулентные из слабо аттенуированного вируса, вызывающего острые изменения в фабрициевой сумке. Это «горя-

чие вакцины», которые вызывают клиническое переболевания птицы, но с меньшим отходом (до 2%). Они способны формировать иммунитет у цыплят, имеющих материнские антитела. Недостатком таких вакцин является их выраженная остаточная вирулентность, способность вакцинных вирусов персистировать во внешней среде и вызывать иммуносупрессивное действие.

- 4. Инактивированные вакцины обеспечивают более напряженный иммунитет у цыплят, позволяют защитить молодняк птицы от заболевания ИББ в ранний период их жизни [4].
- 5. Иммунокомплексные вакцины поселяются в фолликулярных дендритных клетках (селезенка). Эти клетки способны связывать и сохранить иммунокомплексы,

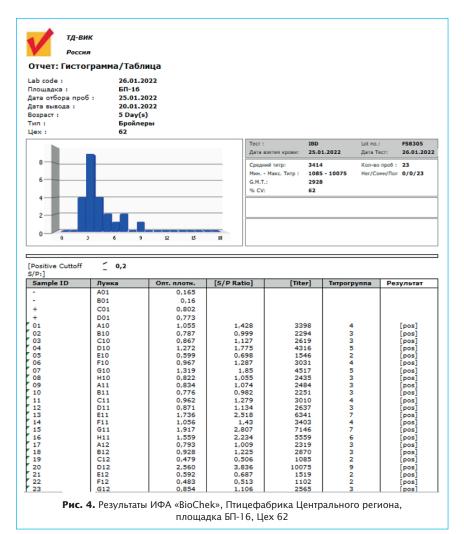
так что они уклоняются от иммунной системы. По мере снижения уровня материнских антител, вирус диссоциируется от антитела, и доходит в бурсу. Антитела связаны с вакцинным вирусом ковалентными связями. Вакцинный штамм реплицируется в каждом цыпленке, когда птица готова принять вирус. Иммунокомплекс безопасен в инкубаторе и *in ovo* [5].

Антитела, переданные от матери через желток яйца, могут защитить птенцов против раннего инфицирования вирусом ИББ. При этом также обеспечивается защита от иммуносупрессивного эффекта вируса. Полупериод существования материнских антител против вируса ИББ составляет от 3 до 5 дней. Следовательно, если известны титры антител потомства, можно предсказать время появления у цыплят чувствительности к вирусу. В. Lucio и S.B. Hitchner доказали, что после падения титров антител ниже 1:100 цыплята стали абсолютно чувствительными к инфекции. В то же время, титры от 1:100 до 1:600 дают приблизительно 40% защиты от заражения. J.K. Skeeles отмечал, что титры должны упасть ниже 1:64, прежде чем станет возможна эффективная вакцинация цыплят ослабленным штаммом вируса ИББ [1]. Такие титры также называют целевыми, их учитывают при входе с вакцинацией против ИББ. Из общемировой практики сотрудников компании BioChek эти титры имеют следующие значения: горячие вакцины – 800-1000, промежуточные вакцины - 500-800; мягкие вакцины – 250-500. Прогнозируя дату вакцинации, необходимо учитывать преодолеваемый уровень материнских антител различных вакцин (табл. 1).

Исключение составляет иммунокомплексные вакцины – Бурсаплекс производства Zoetis, или

Птицеводство - Nº12-2022

аналог, вакцина Трансмун производства Ceva, где титр материнских антител имеет меньшее значение, и вакцинация проводится в инкубатории. Применение иммунокомплексной вакцины Бурсаплекс позволяет исключить расчет первой даты вакцинации, которая зависит от титров материнских антител, и, тем самым, избежать погрешности в качестве вакцинации птицы. Данный эффект связан с принципиально иным механизмом действия иммунокомплексных вакцин.


Количественные показатели и продолжительность выявления материнских антител у цыплят зависят как от возраста, в котором проводили вакцинацию родительских стад, так и от кратности, способа вакцинации и вида вакцины.

Период полураспада антител – время, за которое уровень антител в результате их распада снижается в 2 раза. Продолжительность этого периода для каждого вида птиц более или менее постоянна, однако она может различаться в зависимости от кросса и возраста. Доказано, что период полураспада материнских антител к вирусу ИББ варьирует в зависимости от возраста (табл. 2) [3,5]. Во многом он зависит от условий содержания, кормления, и является величиной, отличительной для каждого стада.

Для установления оптимальных сроков иммунизации предложена математическая формула (формула Девентера), где, исходя из значений титра антител у суточных цыплят и периода их полураспада, рассчитывают сроки вакцинации против ИББ [3]:

BB= $(\log_2 MT - \log_2 LLT) \times \Pi\Pi + B$,

где BB – возраст вакцинации, ИТ – исходный титр материнских антител; ЦТ – целевой титр материнских

антител; ПП – период полураспада; В – возраст птицы в момент взятия крови.

Отмечалось, что важным моментом является то, что значения периода полураспада зависят от возраста птицы на момент взятия пробы. Это важно, поскольку правильный прогноз даты вакцинации также зависит от правильного использования значений периода полураспада, которые должны соответствовать возрасту отбора сыворотки крови. Самый высокий период полураспада (4,6 дня) наблюдается в течение первых 2 дней жизни птицы; после этого, между 3 и 10 днями, он снижается до 4,0 дней с примерно постоянной скоростью [5].

Считается, что более высокие значения периода полураспада в течение первых 2 дней жизни цыпленка являются результатом повышения титров материнских антител из-за «эффекта желточного мешка». Резорбция желтка, содержащего материнские антитела, наиболее высока в течение первых 3 дней жизни цыпленка, что приводит к повышению (или стабилизации) титров.

Прогнозы даты вакцинации против ИББ, основанные на расчетных значениях периода полураспада, дали высокий уровень точности (около 97%), что дополнительно подтверждает рекомендации BioChek по значениям периода полураспада.

Кроме того, существует ряд обязательных условий, от выполнения которых зависит успех проводимой вакцинации. В частности, образцы крови следует отбирать

Таблица 3. Расчет периода полураспада материнских антител. Предприятие Центрального региона, площадка БП-16, Цех 54. Возраст, ДН Титры антител % титров ниже

10%

10%

20%

30%

60%

60%

60%

90%

100%

	Таблица 4. Расчет периода полураспада материнских антител. Предприятие Центрального региона БП-16 Цех 57														
Возраст, дн	5	6	7	8	9	10	- 11	12	13	14	15	16			
	4391	3485	2766	2195	1742	1383	1097	871	691	549	435	346			
	2886	2290	1818	1443	1145	909	721	572	454	361	286	227			
	4340	3444	2734	2170	1722	1367	1085	861	683	542	430	342			
	3160	2508	1990	1580	1254	995	790	627	497	395	313	249			
	3737	2966	2354	1868	1483	1177	934	741	588	467	371	294			
	3400	2698	2142	1700	1349	1071	850	674	535	425	337	268			
	2390	1897	1505	1195	948	753	597	474	376	299	237	188			
	4919	3904	3098	2459	1952	1549	1229	976	774	615	488	387			
	1427	1133	899	713	566	449	357	283	225	178	141	112			
<u>6</u>	3795	3012	2390	1897	1506	1195	948	753	597	474	376	299			
Титры антител	1918	1522	1208	959	761	604	479	380	302	240	190	151			
E E	4919	3904	3098	2459	1952	1549	1229	976	774	615	488	387			
₫.	3634	2884	2289	1817	1442	1144	908	721	572	454	360	286			
Ξ	1408	1117	887	704	559	443	352	279	222	176	140	111			
	2650	2103	1669	1325	1051	834	662	526	417	331	263	209			
	2122	1684	1337	1061	842	668	530	421	334	265	210	167			
	5272	4184	3321	2636	2092	1660	1318	1046	830	659	523	415			
	3455	2742	2176	1727	1371	1088	863	685	544	432	343	272			
	2768	2197	1744	1384	1098	872	692	549	436	346	274	218			
	3419	2713	2154	1709	1356	1077	854	678	538	427	339	269			
	2675	2123	1685	1337	1061	842	668	531	421	334	265	210			
	2791	2215	1758	1395	1107	879	697	554	439	349	277	220			
		% ти	тров ниже	500		9,09%	13,60%	22,70%	50,00%	77,2%	95%	100%			

от клинически здоровой птицы, не менее 23 проб сыворотки крови с корпуса/цеха, отбор осуществляется методом конверта (рис. 1).

10%

10%

10%

10%

Прогнозы даты вакцинации на основании лабораторных исследований помогут ветеринарному специалисту применить живые вакцины в нужное время, чтобы обеспечить разумный «прием» вакцины, без нейтрализующего эффекта материнских антител.

Дополнительный мониторинг средних титров через 3-5 недель после живой вакцинации против ИББ также полезен для определения того, была ли вакцинация (и прогнозирование ее срока), в конечном итоге, успешной или нет. Если средние титры находятся в пределах ожидаемого диапазона после вакцинации, вакцинация и прогноз считаются успешными. Если результирующие титры антител ниже ожидаемых уровней и/или содержат высокий процент отрицательных результатов, это обычно указывает на слишком раннюю вакцинацию [5].

	Таблица 5. Расчет периода полураспада материнских антител. Предприятие Центрального региона БП-16 Цех 62													
Возраст, дн	5	6	7	8	9	10	-11	12	13	14	15	16	17	18
	3398 2697 2140 1699 1348 1070					849	674	535	425	337	267	212	168	
	2294	1821	1445	1147	910	722	573	455	361	287	227	181	143	114
	2619	2079	1650	1309	1039	825	655	519	412	327	260	206	164	130
	4316	3425	2719	2158	1712	1359	1079	856	679	539	428	340	270	214
	1546	1227	974	773	613	487	386	307	243	193	153	122	97	77
	3031	2406	1909	1515	1203	954	757	601	477	379	301	239	189	150
	4517	3585	2845	2258	1792	1422	1129	896	711	564	448	355	282	224
	2435	1933	1534	1217	966	767	609	483	383	304	241	192	152	121
	2484	1971	1565	1242	986	782	621	493	391	310	246	195	155	123
5	2251	1787	1418	1125	893	709	563	446	354	281	223	177	141	112
Титры антител	3010	2389	1896	1505	1194	948	752	597	474	376	298	237	188	149
ант	2637	2093	1661	1318	1046	830	659	523	415	329	261	208	165	131
<u>a</u>	6341	5033	3994	3170	2516	1997	1585	1258	998	792	629	499	396	314
ž	3403	2701	2143	1701	1350	1072	850	675	536	425	337	268	213	169
-	7146	5671	4501	3572	2835	2250	1786	1417	1125	893	709	562	446	354
	5559	4412	3502	2779	2206	1750	1389	1103	875	694	551	437	347	276
	2319	1840	1461	1159	920	730	580	460	365	290	230	182	145	115
	2870	2278	1808	1435	1139	904	717	569	452	359	285	226	179	142
	1085	861	683	542	430	342	271	215	171	136	108	85	68	54
	10075	7996	6346	5037	3997	3172	2518	1998	1586	1259	999	793	629	499
	1519	1206	957	759	603	478	380	301	239	190	151	120	95	75
	1102	875	694	551	437	347	275	219	173	138	109	87	69	55
	2565	2036	1616	1282	1018	808	641	509	404	320	254	202	160	127

Результаты исследований их обсуждение. На рис. 2 показано, почему нельзя ориентироваться на уровень материнского иммунитета по 10 пробам сыворотки крови от птицы с одного цеха: при этом наблюдается высокий коэффициент вариации титров (С_v, %) из-за разброса титрогрупп, и нельзя понять, какой процент поголовья имеет низкий титр антител и готов к вакцинации, и у какого процента птицы уровень материнских антител еще не скоро достигнет уровня целевого «пробивного» титра вакцины. В результате прогноз вакцинации недостоверен из-за малой выборки птицы.

% титров ниже 500

На рис. 3 коэффициент вариации титров находится в ожидаемых пределах (диапазон 30-50%), средний титр соответствует половине антител, полученных от матери (исходя из схемы вак-

цинации родительского стада). Исследуемая сыворотка получена от бройлеров, комплектующихся из одного и того же родительского стада, разница возраста родителей – до 2 недель. В данном случае рекомендуется проводить мониторинг материнских антител у цыплят в возрасте от 3 до 5 дней от каждого комплектующего родительского стада.

На рис. 4 виден разнообразный уровень материнских антител, большой разброс титрогрупп и высокий коэффициент вариации. Данный бройлерных цех комплектовали от инкубационного яйца трех разновозрастных собственных родительских стад, и инкубационного яйца, поступившего из Турции. У цыплят с титрами от второй до четвертой титрогрупп, при отдельном расчете по формуле Девентера, уровень материнских антител уже к 10-11

дню жизни будет ниже целевого титра промежуточной живой вакцины. Цыплята с титрами от седьмой по девятую титрогруппу будут готовы к вакцинации примерно к 14-15 дню. Поэтому сложно рассчитать универсальную дату входа с вакцинацией для всего цеха. Для некоторых цыплят будет или слишком рано, или слишком поздно. В этом случае рекомендуется применить иммунокомплексную вакцину на инкубаторе с целью выравнивания уровня материнских антител перед праймированием живой вакциной. Также рекомендуем раз в тур отбирать сыворотку крови птицы из произвольных цехов за 1-2 дня до планируемой второй вакцинации с целью мониторинга распада материнских антител. Это позволит удостовериться, что уровень антител снизился у большего количества поголовья до целево-

17,39% 17,39% 39,13% 65,20% 73,91% 82,60% 91,30% 95,60% 100,00%

Таблица 6. Отчет «Прогноз даты вакцинации» для цыплят-бройлеров в возрасте 4-5 дней из цехов №; 54, 57 и 62 площадки БП-16 птицефабрики Центрального региона

Отчет: Прогнозирование сроков вакцинации

Оптимальные титры для вакцинации :	ПМ	500	ПМ+	700
% Охват вакцинацией (VC):		30		70

Площадка	Компания	Цех	Тип	Дата вывода	Возр	Пе- риод Полур.	1000	Дата взятия крови		%	Промежуточной Вак Самый Ранний Возра Вакцин. СV			Дата	Промежуточной Плюс Вакцин. (ПМ+) Самый Ранний Возраст и Дата Вакцин. покрытие 30% покрытие 70%			Дата
БП-16	ПФ ЦР	54	BR	24.12.2021	4	3	10	28.12.2021	5839	57	12	05.01.2022	16	09.01.2022	11	04.01.2022	15	08.01.2022
БП-16	ПФ ЦР	57	BR	10.01.2022	5	3	22	15.01.2022	3248	33	12	22.01.2022	14	24.01.2022	11	21.01.2022	12	22.01.2022
БП-16	ПФ ЦР	62	BR	20.01.2022	5	3	23	25.01.2022	3414	62	12	01.02.2022	13	02.02.2022	10	30.01.2022	12	01.02.2022

Разрыв в днях между последующими вакцинациями может составлять удвоенный период полураспада (для бройлеров 3-6 дней, для родителей 4-9 дней, для несушки 5-12 дней)

го титра используемой вакцины. На основании полученных гистограмм ветеринарный врач производит расчет дня входа с вакцинацией.

Рассмотрим варианты таких расчетов по результатам исследований сыворотки крови бройлеров из цехов 54, 57, 62 площадки БП-16, т.е. на основе данных рис. 2-4 (табл. 3-5).

Цех 54 площадки БП-16 достигнет целевого титра – 500 антител – в следующие сроки: на 13 день жизни – 30% поголовья, на 14-16 дни жизни – 60% поголовья (табл. 3). Однако данный расчет является неинформативным из-за малой выборки.

Цех 57 площадки БП-16 достигнет целевого титра – 500 антител – в следующие сроки: 12 день жизни – 22,7% поголовья, 14 день жизни – 77,2% поголовья (табл. 4).

Цех 62 площадки БП-16 достигнет целевого титра – 500 антител – в следующие сроки: 12 день жизни – 39,1% поголовья, 14 день жизни – 73,9% поголовья (табл. 5).

В зависимости от желаемого % покрытия ветеринарный врач вы-

бирает день входа с вакцинацией против ИББ. Прогноз возрастов вакцинаций, рассчитанный в программе BioChek по формуле Девентера, представлен в табл. 6.

По результатам отчета «Прогноз даты вакцинации» в программе RioChek:

- птица цеха №54 площадки БП-16 достигнет целевого титра (500 антител) в возрасте 12 дней – 30% покрытие поголовья, в возрасте 16 дней – 70% покрытие поголовья;
- птица цеха №57 площадки БП-16 достигнет того же целевого титра в возрасте 12 дней при 30%-ном покрытии поголовья, в возрасте 14 дней – 70%-ном покрытии;
- птица цеха №62 площадки БП-16 достигнет целевого титра в возрасте 12 дней с 30%-ным покрытием поголовья, в возрасте 13 дней – 70%-ным.

При планировании проведения двойной вакцинации бройлеров против ИББ разрыв между вакцинациями составляет 3-6 дней.

Заключение. Проведенное исследование показало, что при под-

счете целевого титра материнских антител наблюдается расхождение во времени первой вакцинации, и по % стада с титром антител, говорящем о готовности к успешной вакцинации. В этот период важной информацией является история вакцинации, возраст, однородность стада и комплектация родительских стад. Характерно, что собственный эпизоотический фон на каждом предприятии также может повлиять на результат вакцинации.

Одним из важных критериев достоверности результатов ИФА является правильный отбор проб сыворотки крови. Кратность исследования соответствует плану серомониторинга предприятия.

В ситуациях, когда титры слишком различаются и коэффициент их вариации высокий, невозможно определить единую дату вакцинации для птицы всего корпуса. В этом случае наиболее эффективны иммунокомплексные вакцины, например, Бурсаплекс.

Диагностика методом ИФА с помощью тест-систем BioChek, при соблюдении вышеперечисленных правил и верной интерпретации результатов, позволяет весьма успешно и точно определить подобные отклонения для принятия решений

при вхождении с вакцинацией против ИББ.

Таким образом, серологический мониторинг циркуляции вируса ИББ

в стаде при исследовании в тестсистеме ИФА компании BioChek – инструмент для снижения расходов и получения прибыли предприятием.

Литература

- 1. Кэлнек, Б.У. Болезни домашних и сельскохозяйственных птиц: в 3 ч. / пер. с англ. М.: Аквариум Принт, 2011. Ч. 3. С.14, 25.
- 2. Вирус инфекционной бурсальной болезни: выявление новой генетической группы и реассортантов / Л.О. Щербакова, Е.В. Овчинникова, Т.Н. Зыбина, С.Н. Колосов, Н.Г. Зиняков, З.Б. Никонова, Д.Б. Андрейчук, И.А. Чвала // Ветеринария сегодня. 2022. Т. 11. №1. С. 77-84.
- 3. Алиев А.С. Инфекционная бурсальная болезнь птиц / А.С. Алиев. СПб.: НИИЭМ им. Пастера, 2010. C. 73-75,167-168, 105-106.
- 4. Иллюстрированный атлас болезней птиц. Издательский дом Медол, 2006. С. 46-47.
- 5. Van Leerdam, B. Serological profile and calculation of half-life time with IBD ELISA in a commercial broiler breeder flock in the Netherlands / B. Van Leerdam, H.T. Arts // Zootecnica. 2011. No 7-8. P. 44-49.

Сведения об авторах:

Бабин Г.Ю.: ветеринарный врач-консультант Департамента птицеводства; g.babin@tdvic.ru. **Голубчикова О.А.:** ветеринарный врач-консультант Департамента птицеводства, golubchikova@vicgroup.ru. **Дорофеева С.Г.:** кандидат ветеринарных наук, зам. ген. директора по ветеринарии; dorofeeva@vicgroup.ru. Статья поступила в редакцию 12.10.2022; одобрена после рецензирования 09.11.2022; принята к публикации 15.11.2022.

Research article

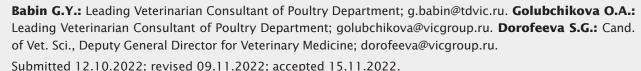
ELISA as a Tool for Calculation of the Vaccination Timing against Infectious Bursal Disease in Poultry

Grigory Y. Babin, Olga A. Golubchikova, Svetlana G. Dorofeeva

VIC Group

Abstract. Infectious bursal disease (IBD; also Gumboro disease, infectious bursitis of chickens) is a highly contagious viral infection of poultry. The economic impact of this disease is determined by significant damage, which, firstly, results from mortality and forced slaughter, spread of secondary infections and the cost of veterinary and sanitary programs. Secondly, and most importantly, IBD causes prolonged immunosuppression in affected birds. The outbursts of IBD usually start suddenly, with morbidity up to 100% and average mortality 20-30%. The diagnosis IBD requires the approval of clinical symptoms by lab tests, and the most effective technique is presently enzyme-linked immunosorbent assay (ELISA); the method is highly sensitive as compared to other methods and allows for the analysis of multiple samples in a short time. BioChek is presently a World's leading company producing ELISA tests for the identification of avian diseases, assessment of antibody titers in individual birds, and calculation of effective vaccination schedules. The results of the trial in commercial conditions of a poultry farm in the Central Region of the Russian Federation with monitoring and control of IBD using the BioChek test system are presented. The analysis of serological tests included the titers and half-life periods of maternal antibodies against IBD in broilers which depend on the vaccination age of the parental flock, number and technique of vaccinations, and vaccine type. The effective times for vaccination of broilers would be calculated according to the Deventer's formula on the basis of initial titer of maternal antibodies, antibodies' half-life period, target antibody titer in chicks, and age of chicks.

Keywords: test system BioChek, enzyme-linked immunosorbent assay (ELISA), infectious bursal disease (IBD), virus, pathogenicity, diagnosis, half-life period, vaccine, prevention, antibody titer, Deventer's formula.


For Citation: Babin G.Y., Golubchikova O.A., Dorofeeva S.G. (2022) ELISA as a tool for calculation of the vaccination timing against infectious bursal disease in poultry. Ptitsevodstvo, 71(12): 59-68. (in Russ.)

doi: 10.33845/0033-3239-2022-71-12-59-68

References

1. Calnek BW (2011) Diseases of Domestic and Agricultural Birds (in 3 Pts.): Rus. transl. Moscow, Aquarium Print, Pt. 3:14-25 (in Russ.). 2. Shcherbakova LO, Ovchinnikova EV, Zybina TN, Kolosov SN, Zinyakov NG, Nikonova ZB, Andreychuk DB, Chvala IA (2022) *Vet. Today*, 11(1):77-84; doi: 10.29326/2304-196X-2022-11-1-77-84 (in Russ.). 3. Aliev AS (2010) Infectious Bursal Disease of Birds. St. Petersburg, Publishing House of Pasteur's NIIEM:73-5,167-8, 105-6 (in Russ.). 4. Illustrated Atlas of Avian Diseases, Medol Publishing House, 2006:46-7 (in Russ.). 5. Van Leerdam B, Arts HT (2011) Serological profile and calculation of half-life time with IBD ELISA in a commercial broiler breeder flock in the Netherlands. *Zootecnica*, (7-8):44-9.

Authors:

© Бабин Г.Ю., Голубчикова О.А., Дорофеева С.Г., 2022

ФНЦ «ВНИТИП» РАН

www.vnitip.ru Тел.: +7 (496) 549-95-75 E-mail: vnitip@vnitip.ru

Предлагает

- перспективные планы селекционно-племенной работы по совершенствованию продуктивных качеств
- ✓ сельскохозяйственной птицы
- новые среды для разбавления спермы самцов птицы
- эффективные рецепты комбикормов для сельскохозяйственной птицы
- √ национальные и межгосударственные стандарты на продукцию птицеводства
- прогрессивные ресурсосберегающие техно-✓ логии промышленного производства яиц и мяса птицы
- ✓ технологические проекты для птицефабрик
- комплексные технологии переработки помета

Проводит оценку

- новых видов кормов (в том числе нетрадиционных), комбикормов, биологического материала и продуктов птицеводства по показателям качества и безопасности
- биологически активных веществ (ферментных препаратов, премиксов, пробиотиков и других добавок)
- Дезинфицирующих средств
- технологического оборудования для содержания птицы

Оказывает консультативную помощь по вопросам

- кормления, содержания всех видов сельскохозяйственной птицы
- технологии инкубации яиц и проведению биологического контроля
- ✓ селекционно-племенной работы в птицеводстве
- профилактики микотоксикозов

Проводит курсы повышения квалификации для специалистов птицеводческих хозяйств и преподавателей вузов